
how to interact with button presses/ActionListener
every component that you want to interact with has to have some kind of listener. for JButtons',
JMenuItems', etc. you need to use an action listener. the action listener is added after the
component is created, and can be any string value but usually is initalized to "this". When an
ActionListener is added using "this", the objects 'ActionCommand' becomes the name of the
objects text.

The ActionCommand's name is the last set text of the object, so if the object changes text, the
ActionCommand will be different.

JButton button1 = new JButton("Button Name");
button1.addActionListener(this);

public void actionPerformed(ActionEvent ae) {// this has to be added if the class
implements ActionListener
 switch (ae.getActionCommand()) {//ae.getActionCommand() gives the
ActionCommand as a string, we use that string to branch to different actions in this
logic tree
 case "Button Name":
 //do thing
 break;
 case "Button 2 Name":
 // do other thing
 default:
 break;
 }
 }

how to exit the program

with dialog

public void actionPerformed(ActionEvent ae){
 switch (ae.getActionCommand()){
 case "Exit":
 int exitDecision = JOptionPane.showConfirmDialog(
 frame,
 "Would you like to exit the program?",
 "Exit?",
 JOptionPane.YES_NO_OPTION);
 if (exitDecision == JOptionPane.YES_OPTION) {
 System.exit(0);
 }
 break;
 }
}

//using the window controlls
frame.addWindowListener(new WindowAdapter() {
 @Override
 public void windowClosing(WindowEvent evt) {
 int resp = JOptionPane.showConfirmDialog(frame, "Are you sure you want to
exit?", "Exit?", JOptionPane.YES_NO_OPTION);
 if (resp == JOptionPane.YES_OPTION) {
 frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
 } else {
 frame.setDefaultCloseOperation(WindowConstants.DO_NOTHING_ON_CLOSE);
 }
 }
});

without a dialog

//for an actionlistener named exit
case "Exit":
 System.exit(0);
 break;

frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);

how to use a menubar

adding the JMenuBar to the frame

 JMenuBar menubar = new JMenuBar();
 frame.setJMenuBar(menubar);

adding JMenu's to a JMenubar

JMenu open = new JMenu("File");
open.setMnemonic('f'); //JMenu mnemonics can't be set in the constructor, so we have
to use a method
menubar.add(open);

adding JMenuItem's to a JMenu

JMenuItems are basically just buttons, they have the same syntax, but you add them to JMenu's
and JMenuBar's.

JMenuItem exit = new JMenuItem("Exit", 'e');
exit.addActionListener(this);
exit.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_W, ActionEvent.CTRL_MASK);

add shortcuts

adding Alt + shortcuts aka mnemonics

Alt + shortcuts all need with a character (char) or an integer (int) that corresponds to a
certain character in the alphabet. You're not supposed to use raw characters and integers and
instead are supposed to use AWT's KeyEvent.VK_ , which then converts the selected character
into an integer constant, and also has the added benefit of recognizing more characters for
internationalization between keyboards. You have to import the java.awt.event library for those.

I use the raw character because it's more readable and debug able though.

//some objects, like JButtons' and JMenuItems', let you add the alt shortcut in the
object declaration
JButton open = new JButton("Open", 'o');

JMenuItem open = new JButton("Open", 'o');

//some components, like JMenus', you have to add the mnemoic through a method after
the declaration because they don't have a constructor that supports adding mnemonics

JMenu file = new JMenu("File...")
file.setMnemonic('f');

adding other key combinations aka CTRL + / 'Accelerators'

Only JMenuItems' can have accelerators.

open.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_O, ActionEvent.CTRL_MASK));

Show a dialog
It's pretty simple

JOptionPane.showMessageDialog(frame,"Copyright (c) 2023 Nathan Brown","Rolodex version
0.1", JOptionPane.DEFAULT_OPTION, icon);

The first field is where the dialog shows up. If you set it to null it ignores the frames focus and
just puts it on your screen, usually centered. 2nd field is a string of text inside the dialog, 3rd is
the title in a string, 4th is an integer telling the method what kind of options it should return
(showMessageDialog is void however), and the 5th and final field is an icon.

All dialogs are static, so you can't have multiple of the same type.

showMessageDialog is a void method but there are other types of dialog that you can set equal to
variables and the program will pause until the dialog is acted on, setting the variable.

There are other types of dialogs that have non void types and can be used to get different kinds
of input.

types of dialog methods for showing modal dialogs

method name return
type constructor comments

showMessageDialog void showMessageDialog(Component,
Object, String, int, Icon)

The int tells wheter or not it's a
Warning or Message or
Error , etc.

showOptionDialog int
showOptionDialog(Component,
Object, String, int, int,
Icon, Object[], Object)

use this for saving or
discarding, things that are
choices but aren't yes/no or
confirm/no. The Object[]
and Object at the end are all
the choices and the initially
selected choice (usually
strings)

showConfirmDialog int
showConfirmDialog(Component,
Object, String, int, int,
Icon)

use this for closing a program,
confirming deletes, etc.

showInputDialog String
showInputDialog(Componenet,
Object, String, int, Icon,
Object[], Object)

Object[] is a list of choices
the user is restricted to. If
Object[] is null, there are no

choices. Object at the end is
the initial contents of the box.

showing non-modal (inside the frame) dialogs

you can use non-modal dialogs (dialogs that are inside of a frame) by using
showInternalXxxDialog , including InternalInput to get a string back, or a simple message with
InternalMessage . More details from Oracle here.

https://docs.oracle.com/javase/8/docs/api/javax/swing/JOptionPane.html#showInternalMessageDialog-java.awt.Component-java.lang.Object-

